Respuesta :

The answer is 1/8.

Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1. [tex] (1/2)^{n} = x[/tex],
where:
n - a number of half-lives
x - a remained fraction of a sample

2. [tex] t_{1/2} = \frac{t}{n} [/tex]
where:
[tex] t_{1/2} [/tex] - half-life
t - total time elapsed
n - a number of half-lives

The half-life of Sr-90 is 28.8 years.
So, we know:
t = 87.3 years
[tex] t_{1/2} [/tex] = 28.8 years

We need:
n = ?
x = ?

We could first use the second equation, to calculate n:
If:
[tex] t_{1/2} = \frac{t}{n} [/tex],
Then: 
[tex]n = \frac{t}{ t_{1/2} } [/tex]
⇒ [tex]n = \frac{87.3 years}{28.8 years} [/tex]
⇒ [tex]n=3.03[/tex]
⇒ n ≈ 3

Now we can use the first equation to calculate the remained amount of the sample.
[tex] (1/2)^{n} = x[/tex]
⇒ [tex]x=(1/2)^3[/tex]
⇒[tex]x= \frac{1}{8} [/tex]