Respuesta :

The answer is 3.75 g.

Half-life is the time required for the amount of a sample to half its value.
To calculate the fraction of the sample remained unchanged, we will use the following formulas:
1. [tex] (1/2)^{n} = x[/tex],
where:
n - a number of half-lives
x - a remained fraction of a sample

2. [tex] t_{1/2} = \frac{t}{n} [/tex]
where:
[tex] t_{1/2} [/tex] - half-life
t - total time elapsed
n - a number of half-lives

The half-life of N-16 is 7.13.
So, we know:
t = 28.8 s
[tex] t_{1/2} [/tex] = 7.13 s

We need:
n = ?
x = ?

We could first use the second equation, to calculate n:
If:
[tex] t_{1/2} = \frac{t}{n} [/tex],
Then: 
[tex]n = \frac{t}{ t_{1/2} } [/tex]
⇒ [tex]n = \frac{28.8 s}{7.13 s} [/tex]
⇒ [tex]n=4.04[/tex]
⇒ n ≈ 4

Now we can use the first equation to calculate the remained amount of the sample.
[tex] (1/2)^{n} = x[/tex]
⇒ [tex]x=(1/2)^4[/tex]
⇒[tex]x= \frac{1}{16} [/tex]


If the fraction of the sample is 1/16 = 6.25%, then the mass of the sample could be calculated as:
x g : 6.25% = 60 g : 100% 
x =