Answer:
a) [tex]t_r = 0.55 s[/tex]
b) a = 5.59 m/s²
Explanation:
given,
total distance traveled by the car to stop is 56.9 m when speed of vehicle is 80 km/h or 80 × 0.278 = 22.24 m/s
total distance traveled by the car to stop is 25.7 m when speed of vehicle is 50.7 km/h or 50.7 × 0.278 = 14.09 m/s
using stopping distance formula
[tex]s_1 = v_1 t_r +\dfrac{v_1^2}{2 a}[/tex]................(1)
[tex]s_2 = v_2 t_r +\dfrac{v_2^2}{2 a}[/tex]..............(2)
on solving both the equation we get
[tex]a = \dfarc{v_1v_2(v_1-v_2)}{2(s_1v_2-s_2v_1)}[/tex]
[tex]a = \dfarc{22.4\times 14.09(22.24-14.09)}{2(56.9\times 14.09-25.7\times 22.24)}[/tex]
a = 5.59 m/s²
now reaction time calculation
[tex]t_r =\dfrac{v_1^2d_2-v_2^2d_1}{v_1v_2(v_1-v_2)}[/tex]
[tex]t_r =\dfrac{22.24^2\times 25.7-14.09^2\times 56.9}{22.4\times 14.09(22.24-14.09)}[/tex]
[tex]t_r = 0.55 s[/tex]