Respuesta :
Answers:
a) Magnitude:5 units Direction:[tex]-53.13\°[/tex] or [tex]53.13\°[/tex] South of East
b) Magnitude:5 units Direction:[tex]53.13\°[/tex] or [tex]53.13\°[/tex] North of East
Explanation:
Vectors in two dimensions have two components Y and X, and are written in the following form:
(X,Y)
In this case we have two vectors:
[tex]\vec{A}=(3,0) [/tex]
[tex]\vec{B}= (0,-4) [/tex]
We need to find [tex]\vec{A} + \vec{B}[/tex] and [tex]\vec{A} - \vec{B}[/tex], their magnitude and direction.
For the magnitude we will use the formula to calculate the distance [tex]d[/tex] between two points (pithagorean theorem):
[tex]d=\sqrt{{(Y2-Y1)}^{2} +{(X2-X1)}^{2}}[/tex] (1)
For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:
[tex]tan \theta=\frac{Y2-Y1}{X2-X1}[/tex] (2)
Now, let's begin with the answers:
a) [tex]\vec{A} + \vec{B}[/tex]
Adding both vectors:
[tex]\vec{A} + \vec{B}=(3,0) + (0,-4)=(3,-4)[/tex]
Finding the magnitude:
[tex]d_{a}=\sqrt{{(-4-0)}^{2} +{(0-3)}^{2}}[/tex]
[tex]d_{a}=\sqrt{{16+9}=\sqrt{{125}[/tex]
[tex]d_{a}=5 units[/tex] This is the magnitude of [tex]\vec{A} + \vec{B}[/tex]
Finding the direction:
[tex]tan \theta=\frac{-4}{3}[/tex]
[tex]\theta=tan^{-1} (\frac{-4}{3})[/tex]
[tex]\theta=-53.13\°[/tex] This is the direction of [tex]\vec{A} + \vec{B}[/tex]
If we assume the positive x axis as the East and the negative y axis as the South, we can also express this direction as:
[tex]53.13\°[/tex] South of East
b) [tex]\vec{A} - \vec{B}[/tex]
Substracting [tex]\vec{B}[/tex] to [tex]\vec{A}[/tex]:
[tex]\vec{A} - \vec{B}=(3,0) - (0,-4)=(3,4)[/tex]
Finding the magnitude:
[tex]d_{a}=\sqrt{{(-4-0)}^{2} +{(0-3)}^{2}}[/tex]
[tex]d_{a}=\sqrt{{16+9}=\sqrt{{125}[/tex]
[tex]d_{a}=5 units[/tex] This is the magnitude of [tex]\vec{A} - \vec{B}[/tex]
Finding the direction:
[tex]tan \alpha=\frac{4}{3}[/tex]
[tex]\alpha=tan^{-1} (\frac{4}{3})[/tex]
[tex]\alpha=53.13\°[/tex] This is the direction of [tex]\vec{A} - \vec{B}[/tex]
If we assume the positive x axis as the East and the positivr y axis as the North, we can also express this direction as:
[tex]53.13\°[/tex] North of East
