Explanation:
The given data is as follows.
coefficient of volume expansion of glycerin ([tex]\beta[/tex]) = [tex]5.1 \times 10^{-4} 1/^{o}C[/tex]
linear expansion coefficient of aluminum, [tex](\alpha_{A})[/tex] = [tex]23 \times 10^{-6} 1/^{o}C[/tex]
Volume = 100 [tex]cm^{3}[/tex]
The increase in volume of the cup will be calculated as follows.
[tex]\Delta V_{c} = V \times 3 \times \alpha \times \Delta T[/tex]
= [tex]100 cm^{3} \times 3 \times 23 \times 10^{-6} \times (31 - 20)^{o}C[/tex]
= [tex]75900 \times 10^{-6} cm^{3}[/tex]
= 0.0759 [tex]cm^{3}[/tex]
Formula for increase in volume of glycerine is as follows.
[tex]\Delta V_{g} = V \times \beta_{g} \times \Delta T[/tex]
= [tex]100 cm^{3} \times 5.1 \times 10^{-4} 1/^{o}C \times (31 - 20)^{o}C[/tex]
= 0.5610 [tex]cm^{3}[/tex]
Therefore, volume of glycerin spilled is calculated as follows.
[tex]\Delta V = \Delta V_{g} - \Delta V_{c}[/tex]
= (0.5610 - 0.0759) [tex]cm^{3}[/tex]
= 0.4851 [tex]cm^{3}[/tex]
Thus, we can conclude that 0.4851 [tex]cm^{3}[/tex] glycerin will spill out of the cup.