Respuesta :

Answer:

[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)[/tex]

Step-by-step explanation:

let's start by separating the fraction into two new smaller fractions

.

First, s(s^2+s+1) must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.

[tex]\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}[/tex]

Where A, B and C are unknown constants. The numerator of s is a constant A, because s is linear, the numerator of s^2+s+1 is a linear expression Bs+C because s^2+s+1 is a quadratic expression.

Multiply both sides by the complete denominator:

[tex][{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)][/tex]

Simplify, reorganize and compare every coefficient both sides:

[tex]s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A[/tex]

Solving the system, we find A=1, B=-1, C=0. Now:

[tex]\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}[/tex]

Then, we can solve the inverse Laplace transform with simplified expressions:

[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}[/tex]

The first inverse Laplace transform has the formula:

[tex]\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\[/tex]

For:

[tex]\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}[/tex]

We have the formulas:

[tex]\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)[/tex]

We have to factorize the denominator:

[tex]-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}[/tex]

It means that:

[tex]\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}[/tex]

[tex]\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}[/tex]

So a=-1/2 and b=(√3)/2. Then:

[tex]\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}][/tex]

Finally:

[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)[/tex]

ACCESS MORE
EDU ACCESS