Respuesta :

caylus
Hello,

[tex] 1+2+2^2+2^3+...+2^9=\frac{2^{10}-1}{2-1}=1023 [/tex]
Ver imagen caylus
the nth term is
an=a1(r)^(n-1)
an=1(2)^(n-1)
a1=1
r=2

the sum of a geometric seequence is
[tex] S_{n}=\frac{a_{1}(1-r^{n})}{1-r} [/tex]
a1=1
r=2
we want to find [tex] S_{10} [/tex] (since we minus 1, the highest exponet is 9 so add 1 to make it correct)

[tex] S_{10}=\frac{1(1-2^{10})}{1-2} [/tex]
[tex] S_{10}=\frac{(1-1024}{-1} [/tex]
[tex] S_{10}=\frac{(-1023}{-1} [/tex]
[tex] S_{10}=1023 [/tex]

ACCESS MORE