Answer:
(a). The Fermi energy is [tex]5.75\times10^{-17}\ eV[/tex]
(b). The next available energy level in a 1 cm³ is [tex]1.51\times10^{-6}\ eV[/tex]
(c). The next available energy level in a 10 nm is 1.508 eV.
Explanation:
Given that,
Number of electron [tex]n=18\times10^{2}\ electron/m^3[/tex]
(a). We need to calculate the Fermi energy in electron volts
Using formula of Fermi energy
[tex] E_{f}=\dfrac{h}{8m}(\dfrac{3}{\pi})^{\frac{2}{3}}n^{\frac{2}{3}}[/tex]
Put the value into the formula
[tex]E_{f}=\dfrac{(6.67\times10^{-34})^2}{8\times9.1\times10^{-31}}(\dfrac{3}{\pi})^{\frac{2}{3}}(18\times10^{2})^{\frac{2}{3}}[/tex]
[tex]E_{f}=5.75\times10^{-17}\ eV[/tex]
The Fermi energy is [tex]5.75\times10^{-17}\ eV[/tex]
(b). We need to calculate the next available energy level in a 1 cm³
[tex]a = 1 cm^3 = 10^{-6}\ m^3[/tex]
n = 2
Using formula of energy
[tex]E_{n}=\dfrac{n^2\pi^2\hbar^2}{2ma^2}[/tex]
Put the value into the formula
[tex]E_{n}=\dfrac{(2)^2\times\pi^2\times(1.0545\times10^{-34})^2}{2\times9.1\times10^{-31}\times(10^{-6})^2}[/tex]
[tex]E_{n}=0.0000015075\ ev[/tex]
[tex]E_{n}=1.51\times10^{-6}\ eV[/tex]
The next available energy level in a 1 cm³ is [tex]1.51\times10^{-6}\ eV[/tex].
(c). We need to calculate the next available energy level in a 10 nm
[tex]a = 10 nm = 10^{-9}\ m^3[/tex]
n = 2
Using formula of energy
[tex]E_{n}=\dfrac{n^2\pi^2\hbar^2}{2ma^2}[/tex]
Put the value into the formula
[tex]E_{n}=\dfrac{(2)^2\times\pi^2\times(1.0545\times10^{-34})^2}{2\times9.1\times10^{-31}\times(10^{-9})^2}[/tex]
[tex]E_{n}=1.508\ ev[/tex]
The next available energy level in a 10 nm is 1.508 eV.
Hence, This is the required solution.