Ideal He gas expanded at constant pressure of 3 atm until its volume was increased from 9 liters to 15 liters. During this process, the gas absorbed 800J of heat from the surroundings. Please calculate the internal energy change of the gas, AE.

Respuesta :

Explanation:

The given data is as follows.

             P = 3 atm

                = [tex]3 atm \times \frac{1.01325 \times 10^{5} Pa}{1 atm}[/tex]  

                 = [tex]3.03975 \times 10^{5} Pa[/tex]

    [tex]V_{1}[/tex] = 9 L = [tex]9 \times 10^{-3} m^{3}[/tex]    (as 1 L = 0.001 [tex]m^{3}[/tex]),  

        [tex]V_{2}[/tex] = 15 L = [tex]15 \times 10^{-3} m^{3}[/tex]

            Heat energy = 800 J

As relation between work, pressure and change in volume is as follows.

                  W = [tex]P \times \Delta V[/tex]

or,                W = [tex]P \times (V_{2} - V_{1})[/tex]

Therefore, putting the given values into the above formula as follows.

                  W = [tex]P \times (V_{2} - V_{1})[/tex]

                      = [tex]3.03975 \times 10^{5} Pa \times (15 \times 10^{-3} m^{3} - 9 \times 10^{-3} m^{3})[/tex]

                      = 1823.85 Nm

or,                   = 1823.85 J

As internal energy of the gas [tex]\Delta E[/tex] is as follows.

                     [tex]\Delta E[/tex] = Q - W

                                  = 800 J - 1823.85 J

                                  = -1023.85 J

Thus, we can conclude that the internal energy change of the given gas is -1023.85 J.

RELAXING NOICE
Relax