Answer:
[tex] v_{max}=14.2\frac{m}{s} [/tex]
Explanation:
Hi!
If the crate is not sliding, its trajectory is the arc with 36.1 m radius. Then the crate has a centripetal acceleration:
[tex]a_c= \frac{v^2}{r} \\r = radius\\v = tangential \; velocity[/tex]
The centripetal force acting on the crate is the static friction force between crate and truck. The maximum value of this force is:
[tex]F_{max} = \mu N\\\mu = 0.570=static\;friction \;coefficient\\N =normal\; force\\[/tex]
The normal force has a magnitude equal to the weight of the crate:
[tex]N=mg[/tex]
Then the condition for not sliding is:
[tex]F_{centripetal} = M\frac{v^2}{r}<\mu N=\mu Mg\\ v^2<r \mu g = 36.1\;m*0.570*9.8\frac{m}{s^2}= 201.65 \frac{m^2}{s^2}\\ v<14.2\frac{m}{s}[/tex]