Answer:
[tex]v = 1,582 \ \frac{m}{s}[/tex]
Explanation:
We know that for circular motion the centripetal acceleration [tex]a_c[/tex] is:
[tex]a_c = \frac{v^2}{r}[/tex]
where v is the speed and r is the radius.
The centripetal acceleration for the astronaut must be the gravitational acceleration due to the gravity, as there are no other force. So
[tex]a_c = 1.27 \frac{m}{s^2}[/tex].
The radius of the orbit must be the radius of the Moon, plus the 270 km above the surface
[tex]r = 1.7 * 10^6 \ m + 270 \ km[/tex]
[tex]r = 1.7 * 10^6 \ m + 270 * 10^3 \ m[/tex]
[tex]r = 1.7 * 10^6 \ m + 0.270 * 10^6 \ m[/tex]
[tex]r = 1.97 * 10^6 \ m [/tex]
We can obtain the speed as:
[tex]v^2 = a_c r[/tex]
[tex]v = \sqrt{a_c r}[/tex]
[tex]v = \sqrt{1.27 \frac{m}{s^2} * 1.97 * 10^6 \ m}[/tex]
[tex]v = \sqrt{ 2.509 \ 10^6 \ \frac{m^2}{s^2}}[/tex]
[tex]v = 1.582 \ 10^3 \ \frac{m}{s}[/tex]
[tex]v = 1,582 \ \frac{m}{s}[/tex]
And this is the orbital speed.