Answer:
Part a)
[tex]v_{cm} = 2.98 \times 10^4 m/s[/tex]
Part b)
[tex]K_{trans} = 2.68 \times 10^{33} J[/tex]
Part c)
[tex]\omega = 7.27 \times 10^{-5} rad/s[/tex]
Part d)
[tex]KE_{rot} = 2.6 \times 10^{29} J[/tex]
Part e)
[tex]KE_{tot} = 2.68 \times 10^{33} J[/tex]
Explanation:
Time period of Earth about Sun is 1 Year
so it is
[tex]T = 1 year = 3.15 \times 10^7 s[/tex]
now we know that angular speed of the Earth about Sun is given as
[tex]\omega = \frac{2\pi}{T}[/tex]
[tex]\omega = \frac{2\pi}{3.15 \times 10^7}[/tex]
now speed of center of Earth is given as
[tex]v_{cm} = r\omega[/tex]
[tex]r = 1.5 \times 10^{11} m[/tex]
[tex]v_{cm} = (1.5 \times 10^{11})(\frac{2\pi}{3.15 \times 10^7})[/tex]
[tex]v_{cm} = 2.98 \times 10^4 m/s[/tex]
Part b)
now transnational kinetic energy of center of Earth is given as
[tex]K_{trans} = \frac{1}{2}mv^2[/tex]
[tex]K_{trans} = \frac{1}{2}(6 \times 10^{24})(2.98 \times 10^4)^2[/tex]
[tex]K_{trans} = 2.68 \times 10^{33} J[/tex]
Part c)
Angular speed of Earth about its own axis is given as
[tex]\omega = \frac{2\pi}{T}[/tex]
[tex]\omega = \frac{2\pi}{24 \times 3600}[/tex]
[tex]\omega = 7.27 \times 10^{-5} rad/s[/tex]
Part d)
Now moment of inertia of Earth about its own axis
[tex]I = \frac{2}{5}mR^2[/tex]
[tex]I = \frac{2}{5}(6 \times 10^{24})(6.4 \times 10^6)^2[/tex]
[tex]I = 9.83 \times 10^{37} kg m^2[/tex]
now rotational energy is given as
[tex]KE_{rot} = \frac{1}{2}I\omega^2[/tex]
[tex]KE_{rot} = \frac{1}{2}(9.83 \times 10^{37})(7.27 \times 10^{-5})^2[/tex]
[tex]KE_{rot} = 2.6 \times 10^{29} J[/tex]
Part e)
Now total kinetic energy is given as
[tex]KE_{tot} = KE_{trans} + KE_{rot}[/tex]
[tex]KE_{tot} = 2.68 \times 10^{33} + 2.6 \times 10^{29}[/tex]
[tex]KE_{tot} = 2.68 \times 10^{33} J[/tex]