Answer:
(a) 0.01029 (b) 4.167 customers (c) 0.4167 hours or 25 minutes (d) 0.5 hours or 30 minutes
Step-by-step explanation:
With an arrival time of 6 minutes, λ=10 clients/hour.
With a service time of 5 minutes per transaction, μ=12 transactions/hour.
(a) The probability of 3 or fewer customers arriving in one hour is
P(C<=3)=P(1)+P(2)+P(3)
[tex]P(X)=\lambda^{X}*e^{-\lambda} /X![/tex]
[tex]P(1)=10^{1}*e^{-10} /1!=0.00045\\P(3)=10^{3}*e^{-10} /3!=0,00227\\P(2)=10^{2}*e^{-10} /2!=0,00757\\P(x\leq3)=0.00045+0.00227+0.00757 = 0.01029[/tex]
(b) The average number of customers waiting at any point in time (Lq) can be calculated as
[tex]L_{q}=p*L=\frac{\lambda}{\mu}*\frac{\lambda}{\mu-\lambda}\\L_{q}=\frac{10}{12}*\frac{10}{12-10}\\\\L_{q}=100/24=4.167[/tex]
(c) The average time waiting in the system (Wq) can be calculated as
[tex]W_{q}=p*W=\frac{\lambda}{\mu}*\frac{1}{\mu-\lambda}\\W_{q}=(10/12)*(1/(12-10))\\W_{q}=(10/24)=0.4167[/tex]
(d) The average time in the system (W), waiting and service, can be calculated as
[tex]W=\frac{1}{\mu-\lambda}\\W=\frac{1}{12-10}=0.5[/tex]