Answer: [tex]\vec{v}=1(17)\hat{i}+2(7)\hat{j}+3(6.67)\hat{k}[/tex]
Step-by-step explanation:
Since we have given that
[tex]\vec{u}=5\hat{i}-4\hat{j}+2\hat{k}\\\\and\\\\\vec{w}=}[/tex]
We need to find the value of
[tex]5\vec{u}+2\vec{w}[/tex] in the form of [tex]\vec{v}=1\hat{i}+2\hat{j}+3\hat{k}[/tex]
so, it becomes,
[tex]5(5\hat{i}-4\hat{j}+2\hat{k})+2(-4\hat{i}+3\hat{j}+5\hat{k})\\\\=25\hat{i}-20\hat{j}+10\hat{k}-8\hat{i}+6\hat{j}+10\hat{k}\\\\=17\hat{i}-14\hat{j}+20\hat{k}[/tex]
So, in the form of [tex]\vec{v}[/tex]
So, it becomes,
[tex]\vec{v}=1(17)\hat{i}+2(7)\hat{j}+3(6.67)\hat{k}[/tex]