Answer:
a. [tex] c = 0.1739 \frac{m}{s^2} [/tex]
b. [tex]v(40.0 s ) = 1.64 \frac{m}{s}[/tex]
Explanation:
So, the equation for the speed is:
[tex]v(t) = v_i - c t[/tex]
as we know that the initial speed is
[tex]v_i = 8.2 \frac{m}{s}[/tex]
and the speed at t=18.4 s is
[tex]v(18.4 s ) = 8.2 \frac{m}{s}- c 18.4 s = 5.00 \frac{m}{s}[/tex]
Now, we can work it a little:
[tex]- c 18.4 s = 5.00 \frac{m}{s} - 8.2 \frac{m}{s}[/tex]
[tex]- c 18.4 s = -3.20 \frac{m}{s} [/tex]
[tex]- c 18.4 s = -3.20 \frac{m}{s} [/tex]
[tex] c = \frac{ -3.20 \frac{m}{s} }{ - 18.4 s } [/tex]
[tex] c = 0.1739 \frac{m}{s^2} [/tex]
So, at t=40.0 s the speed will be:
[tex]v(40.0 s ) = 8.2 \frac{m}{s}- 0.1739 \frac{m}{s^2} * 40.0 s[/tex]
[tex]v(40.0 s ) = 8.2 \frac{m}{s}- 6.96 \frac{m}{s}[/tex]
[tex]v(40.0 s ) = 1.64 \frac{m}{s}[/tex]