Answer:
[tex]\frac{20}{33}[/tex]
Step-by-step explanation:
We are given that
Sophomores=13
Juniors=12
Seniors=8
Male sophomores=5
Female sophomores=6
Male seniors=4
We have to find the probability of randomly selecting a junior or a senior.
Total persons=13+12+8=33
Let A=Seniors
B=Juniors
Probability,P(E)=[tex]\frac{number\;of\;favorable\;cases}{total\;number\;of cases}[/tex]
Using the formula of probability
[tex]P(A)=\frac{8}{33}[/tex]
[tex]P(B)=\frac{12}{33}[/tex]
[tex]A\cap B=0[/tex]
[tex]P(A\cap B)=0[/tex]
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
[tex]P(A\cup B)=\frac{8}{33}+\frac{12}{33}[/tex]
[tex]P(A\cup B)=\frac{8+12}{33}=\frac{20}{33}[/tex]
Hence, the probability of selecting a junior or senior=[tex]\frac{20}{33}[/tex]