Respuesta :
Answer:
2.1 × 10⁻⁵ T
Explanation:
Given:
Inner radius, r = 4 mm = 0.004 m
Outer radius, R = 25 mm = 0.025 m
Current, I = 4 A
Distance of the point from the center, a = 17 mm = 0.017 m
μ₀ = 4π × 10⁻⁷ T·m/A
Now,
For the hollow cylinder magnetic field (B) is given as:
[tex]B=\frac{\mu_0 I(a^2-r^2)\textup{}}{2\pi a(R^2-r^2)\textup{}}[/tex]
on substituting the respective values, we get
[tex]B=\frac{4\pi\times10^{-7}\times4(0.017^2-0.004^2)\textup{}}{2\pi\times0.017(0.025^2-0.004^2)\textup{}}[/tex]
or
B = 2.1 × 10⁻⁵ T
The magnitude of the magnetic field for this hollow cylinder is [tex]2.1 \times 10^{-5}\;Tesla[/tex]
Given the following data:
Inner radius = 4 mm to m = 0.004 m.
Outer radius = 25 mm to m = 0.025 m.
Current = 4 A.
Distance = 17 mm to m = 0.017 m.
Permittivity of free space = [tex]4\pi \times 10^{-7}\; T.m/A[/tex]
How to calculate the magnetic field.
Mathematically, the magnitude of the magnetic field for a hollow cylinder is given by this formula:
[tex]B=\frac{\mu_o I(d^2 -r^2)}{2\pi d (R^2 -r^2)}[/tex]
Where:
- B is the magnetic field.
- I is the current.
- R is the outer radius.
- r is the inner radius.
- d is the distance.
- [tex]\mu_o[/tex] is the permittivity of free space.
Substituting the given parameters into the formula, we have;
[tex]B=\frac{4\pi \times 10^{-7}\times 4 (0.017^2 -0.004^2)}{2\pi \times 0.017 (0.025^2 -0.004^2)}\\\\B=2.1 \times 10^{-5}\;Tesla[/tex]
Read more on magnetic field here: https://brainly.com/question/7802337
Otras preguntas
