3. A set of n = 18 pairs of scores (X and Y values) has SSX = 20, SSY = 80, and SP = 10. If the mean for the X values is MX = 8 and the mean for the Y values is MY = 10. a. Calculate the Pearson correlation for the scores. b. Find the regression equation for predicting Y from the X values. Gravetter, Frederick J. Statistics for The Behavioral Sciences (p. 556). Cengage Learning. Kindle Edition.

Respuesta :

Answer:

a. Pearson Correlation

r= [tex]\frac{1}{4}[/tex]  or 0,25

b. The regression equation is

[tex]Y = 6+ 0,5 *X[/tex]

Step-by-step explanation:

a. Pearson Correlation

Using the equation for Pearson correlation:

[tex]r = \frac{SP}{\sqrt{(SS_{x} * SS_{y})} }[/tex]

[tex]r= \frac{10}{\sqrt{(20 * 80)} }[/tex]

[tex]r=\frac{10}{\sqrt{1600} }[/tex]

[tex]r=\frac{10}{40} =\frac{1}{4} = 0,25[/tex]

b. Regression

Using regression equation

1.  [tex]Y = a+ b *X[/tex]

2. [tex]a= m_{y} - b* m_{x}[/tex]

3. [tex]b= \frac{SP}{SS_{x} }[/tex]

So replacing first 'b' because is content in 'a' equation

[tex]b= \frac{SP}{SS_{x} }[/tex]

[tex]b= \frac{10}{20}[/tex]

[tex]b= \frac{1}{2} = 0,5[/tex]

Knowing 'b' can know 'a' and complete the equation

[tex]a= m_{y} - b* m_{x}[/tex]

[tex]a= 10 - 0,5* 8[/tex]

[tex]a= 6[/tex]

Replacing in the equation 1:

1.  [tex]Y = a+ b *X[/tex]

[tex]Y = 6+ 0,5 *X[/tex]

RELAXING NOICE
Relax