Answer:
a. Pearson Correlation
r= [tex]\frac{1}{4}[/tex] or 0,25
b. The regression equation is
[tex]Y = 6+ 0,5 *X[/tex]
Step-by-step explanation:
a. Pearson Correlation
Using the equation for Pearson correlation:
[tex]r = \frac{SP}{\sqrt{(SS_{x} * SS_{y})} }[/tex]
[tex]r= \frac{10}{\sqrt{(20 * 80)} }[/tex]
[tex]r=\frac{10}{\sqrt{1600} }[/tex]
[tex]r=\frac{10}{40} =\frac{1}{4} = 0,25[/tex]
b. Regression
Using regression equation
1. [tex]Y = a+ b *X[/tex]
2. [tex]a= m_{y} - b* m_{x}[/tex]
3. [tex]b= \frac{SP}{SS_{x} }[/tex]
So replacing first 'b' because is content in 'a' equation
[tex]b= \frac{SP}{SS_{x} }[/tex]
[tex]b= \frac{10}{20}[/tex]
[tex]b= \frac{1}{2} = 0,5[/tex]
Knowing 'b' can know 'a' and complete the equation
[tex]a= m_{y} - b* m_{x}[/tex]
[tex]a= 10 - 0,5* 8[/tex]
[tex]a= 6[/tex]
Replacing in the equation 1:
1. [tex]Y = a+ b *X[/tex]
[tex]Y = 6+ 0,5 *X[/tex]