The number of chips of different colors in Gail's bag is shown below:
3 blue chips
4 pink chips
8 white chips
Gail takes out a chip from the bag randomly without looking. She replaces the chip and then takes out another chip from the bag. What is the probability that Gail takes out a white chip in both draws?
A.[tex] \frac{8}{15} [/tex]+[tex] \frac{7}{14} [/tex]=[tex] \frac{217}{210} [/tex]
B.[tex] \frac{8}{15} [/tex]×[tex] \frac{7}{14} [/tex]=[tex] \frac{56}{210} [/tex]
C.[tex] \frac{8}{15} [/tex]+[tex] \frac{8}{15} [/tex]=[tex] \frac{16}{15} [/tex]
D.[tex] \frac{8}{15} [/tex]×[tex] \frac{8}{15} [/tex]=[tex] \frac{64}{225} [/tex]

Respuesta :

most likely the probability is D because my mom said it is d i dont know how she got it

Answer:

[tex]\frac{8}{15} \times \frac{8}{15}=\frac{64}{225}[/tex]

Step-by-step explanation:

Given : 3 blue chips

            4 pink chips

            8 white chips

To Find:  What is the probability that Gail takes out a white chip in both draws with replacement?

Solution:

Blue chips  =3

Pink chips  =4

White chips =8

Total chips = 3+4+8 =15

Now Probability of getting white chip on first draw = [tex]\frac{\text{Number of white chips }}{\text{Total no. of chips}}[/tex]

                                                                                   = [tex]\frac{8}{15}[/tex]  

Now ,She replaces the chip and then takes out another chip from the bag.

So, Probability of getting white chip on second draw = [tex]\frac{8}{15}[/tex]  

Probability of getting white chip in both draws = [tex]\frac{8}{15} \times \frac{8}{15}=\frac{64}{225}[/tex]

Hence the probability that Gail takes out a white chip in both draws is [tex]\frac{8}{15} \times \frac{8}{15}=\frac{64}{225}[/tex]

Thus Option D is correct.