Explanation:
Given that,
Intensity = 1150 W/m²
(a). We need to calculate the magnetic field
Using formula of intensity
[tex]I=\dfrac{E^2}{2\mu_{0}c}[/tex]
[tex]E=\sqrt{2\times I\mu_{0}c}[/tex]
Put the value into the formula
[tex]E=\sqrt{2\times1150\times4\pi\times10^{-7}\times3\times10^{8}}[/tex]
[tex]E=931.17\ N/C[/tex]
Using formula of magnetic field
[tex]B = \dfrac{E}{c}[/tex]
Put the value into the formula
[tex]B=\dfrac{931.17}{3\times10^{8}}[/tex]
[tex]B=0.0000031039\ T[/tex]
[tex]B=3.10\times10^{-6}\ T[/tex]
(b). The relative strength of the gravitational and solar electromagnetic pressure forces of the sun on the earth
We need to calculate the gravitational force
Using gravitational force
[tex]F=\dfrac{Gm_{s}M_{e}}{r^2}[/tex]
Put the value into the formula
[tex]F=\dfrac{6.67\times10^{-11}\times1.98\times10^{30}\times5.97\times10^{24}}{(1.496\times10^{11})^2}[/tex]
[tex]F=3.522\times10^{22}\ N[/tex]
We need to calculate the radiation force
Using formula of force
[tex]F_{R}=\dfrac{I}{c}\pi\timesR_{E}^{2}[/tex]
Put the value into the formula
[tex]F_{R}=\dfrac{1150}{3\times10^{8}}\times\pi\times(6.378\times10^{6})^2[/tex]
[tex]F_{R}=4.8\times10^{8}\ N[/tex]
The gravitational and solar electromagnetic pressure forces of the sun on the earth
[tex]\dfrac{F_{G}}{F_{R}}=\dfrac{3.522\times10^{22}}{4.8\times10^{8}}[/tex]
[tex]\dfrac{F_{G}}{F_{R}}=7.3375\times10^{13}[/tex]
Hence, This is the required solution.