Respuesta :
Answer:
(a) -5.082 kJ
(b) 40 kJ
Explanation:
(a)
The net work of the cycle is calculated as
[tex]w_{cycle} = w_{12} + w_{23} + w_{31} (1) [/tex]
[tex]w_{31} = 0[/tex] because [tex]V_3 = V_1[/tex] and [tex]W_{12} = 15 kJ[/tex], so [tex]w_{23}[/tex] has to be computed.
[tex]w_{23} = \int_{V_2}^{V_3} pdV = \int_{V_2}^{V_3} \frac{constant}{V} dV = p_2 V_2 \, ln \frac{V_3}{V_2} (2)[/tex]
From data
[tex]V_3 = V_1 = 0.028 m^3[/tex]
[tex]p_2 = p_1 = 1.4 bar = 1.4\times10^5 Pa[/tex]
We need to find [tex]V_2[/tex], to do so
[tex]w_{12} = \int_{V_1}^{V_2} pdV = p_1 \, (V_2 - V_1)[/tex]
[tex]V_2 = \frac{w_{12}}{p_1} + V_1[/tex]
[tex]V_2 = \frac{15\times10^3 J}{1.4\times10^5 Pa} \times \frac{N \, m}{J} \times \frac{Pa}{N/m^2} + 0.028 m^3[/tex]
[tex]V_2 = 0.107 m^3[/tex]
From equation 2
[tex]w_{23} = p_1 V_2 \, ln \frac{V_1}{V_2} [/tex]
[tex]w_{23} = 1.4\times10^5 N/m^2 \, 0.107 m^3 \, ln \frac{0.028 m^3}{0.107 m^3} [/tex]
[tex]w_{23} = -20082 J = -20.082 kJ[/tex]
From equation 1
[tex]w_{cycle} = w_{12} + w_{23} + w_{31}[/tex]
[tex]w_{cycle} = 15 kJ -20.082 kJ[/tex]
[tex]w_{cycle} = -5.082 kJ [/tex]
(b)
Taking into account that there are no significant changes in kinetic or potential energy, from the energy balance in 1-2 process we get
[tex]U_2 - U_1 = Q_{12} - W_{12}[/tex]
With [tex]U_2 = U_3[/tex]
[tex]Q_{12} = (U_3 - U_1) + W_{12} [/tex]
[tex]Q_{12} = 25 kJ+ 15 kJ [/tex]
[tex]Q_{12} = 40 kJ [/tex]
Based on the calculations, the net work for this cycle is equal to -20.12 kJ.
How to calculate the net work for the cycle.
- Pressure = 1.4 bar.
- [tex]V_1=0.0028\;m^3[/tex]
- [tex]W_{12}=15\;kJ[/tex]
Since process 1-2 has a constant pressure, the work done is given by this formula:
[tex]\Delta W=P\Delta V=P(V_2-V_1)\\\\15\times 10^3=1.4\times 10^5(V_2-0.028)\\\\15000=140000V_2-3920\\\\140000V_2=15000+0.0392\\\\V_2=\frac{15000.0392}{140000} \\\\V_2=0.1071\;m^3[/tex]
During process 2-3, we have:
[tex]pV = constant\\\\U3 = U2[/tex]
During process 3-1, we have:
[tex]U1 - U3 = -25 kJ\\\\V=k[/tex]
We would calculate the final temperature ([tex]T_2[/tex]) by using the ideal gas equation:
[tex]P_2V_2=RT_2\\\\T_2=\frac{P_2V_2}{R} \\\\T_2=\frac{1.4 \times 10^5 \times 0.1071}{8.314}\\\\T_2=1,803.46\;K[/tex]
For the work done:
[tex]W_{23}=RT_2ln\frac{V_1}{V_2} \\\\W_{23}=8.314 \times 1803.46 \times ln\frac{0.028}{0.1071}\\\\W_{23}= 14994 \times ln(0.2614)\\\\W_{23}= 14994 \times ( -1.3417)\\\\W_{23}= -20117.50\\\\W_{23}= -20.12\;kJ[/tex]
Now, we can determine the net work for the cycle:
[tex]\Delta W_{net}=-20.12 + 15\\\\\Delta W_{net}= -5.12\;kJ[/tex]
How to calculate the the heat transfer for process 1-2.
[tex]\Delta Q=\Delta U + W\\\\\Delta Q=25+15\\\\\Delta Q=40\;kJ[/tex]
Read more on net work here: https://brainly.com/question/10119215