Answer:
a) [tex]v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s[/tex]
[tex]v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s[/tex]
[tex]v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s[/tex]
[tex]v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s[/tex]
b) [tex]v=65-32(2)=1ft/s[/tex]
Explanation:
From the exercise we got the ball's equation of position:
[tex]y=65t-16t^{2}[/tex]
a) To find the average velocity at the given time we need to use the following formula:
[tex]v=\frac{y_{2}-y_{1} }{t_{2}-t_{1} }[/tex]
Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001
[tex]y_{t=2}=65(2)-16(2)^{2} =66ft[/tex]
[tex]y_{t=2.5}=65(2.5)-16(2.5)^{2} =62.5ft[/tex]
[tex]v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s[/tex]
--
[tex]y_{t=2.1}=65(2.1)-16(2.1)^{2} =65.94ft[/tex]
[tex]v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s[/tex]
--
[tex]y_{t=2.01}=65(2.01)-16(2.01)^{2} =66.0084ft[/tex]
[tex]v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s[/tex]
--
[tex]y_{t=2.001}=65(2.001)-16(2.001)^{2} =66.001ft[/tex]
[tex]v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s[/tex]
b) To find the instantaneous velocity we need to derivate the equation
[tex]v=\frac{df}{dt}=65-32t[/tex]
[tex]v=65-32(2)=1ft/s[/tex]