Respuesta :
Answer:
- The magnitude of the resulting force is 67 lbf.
Explanation:
Taking the east as the positive x direction, and the north as the positive y direction.
The first force points west, this is, in the direction of [tex]-\hat{i}[/tex], so, is
[tex]\vec{F}_1 = - 20 \ lbf \ \hat{j}[/tex]
[tex]\vec{F}_1 = (0 , - 20 \ lbf \)[/tex]
For the second force, knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula
[tex]\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )[/tex]
where [tex]| \vec{A} |[/tex] is the magnitude of the vector and θ the angle with the positive x direction.
So, the second force is
[tex] \vec{F}_2 = 80 \ lbf \ \ ( \ cos(45 \°) \ , \ sin (45 \°) \ )[/tex]
[tex] \vec{F}_2 = ( \ 56.5685 \ lbf \ , \ 56.5685 \ lbf \ )[/tex]
The net force will be :
[tex]\vec{F}_{net} = \vec{F}_1 + \vec{F}_2[/tex]
[tex]\vec{F}_{net} = (0 , - 20 \ lbf \) + ( \ 56.5685 \ lbf \ , \ 56.5685 \ lbf \ )[/tex]
[tex]\vec{F}_{net} = ( \ 56.5685 \ lbf \ , \ 56.5685 \ lbf \ - 20 \ lbf )[/tex]
[tex]\vec{F}_{net} = ( \ 56.5685 \ lbf \ , \ 36.5685 \ lbf \ )[/tex]
To obtain the magnitude, we can use the Pythagorean Theorem
[tex]|\vec{F}_{net}| = \sqrt{F_{net_x}^2 +F_{net_y}^2}[/tex]
[tex]|\vec{F}_{net}| = \sqrt{( \ 56.5685 \ lbf \ )^2 +( \ 36.5685 \ lbf \ )^2}[/tex]
[tex]|\vec{F}_{net}| = 67.36 \ lbf[/tex]
And this is the magnitude we are looking for.