Respuesta :
Answer:
[tex]P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}[/tex]
Step-by-step explanation:
Hi!
Lets define:
C = 1 if candidate is qualified
C = 0 if candidate is not qualified
A = 1 correct answer
A = 0 wrong answer
T = 1 test passed
T = 0 test failed
We know that:
[tex]P(C=1)=q\\P(A=1 | C=1) = p\\P(A=0 | C=0) = p[/tex]
The test consist of 20 questions. The answers are indpendent, then the number of correct answers X has a binomial distribution (conditional on the candidate qualification):
[tex]P(X=x | C=1)=f_1(x)=\binom{20}{x}p^x(1-p)^{20-x}\\P(X=x | C=0)=f_0(x)=\binom{20}{x}(1-p)^xp^{20-x}[/tex]
The probability of at least 15 (P(T=1))correct answers is:
[tex]P(X\geq 15|C=1)=\sum_{i=15}^{20}f_1(i)\\P(X\geq 15|C=0)=\sum_{i=15}^{20}f_0(i)\\[/tex]
We need to calculate the conditional probabiliy P(C=1 |T=1). We use Bayes theorem:
[tex]P(C=1|T=1)=\frac{P(T=1|C=1)P(C=1)}{P(T=1)}\\P(T=1) = qP(T=1|C=1) + (1-q)P(T=1|C=0)[/tex]
[tex]P(T=1)=q\sum_{i=15}^{20}f_1(i) + (1-q)\sum_{i=15}^{20}f_0(i)\\P(T=1)=\sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i)][/tex]
[tex]P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}[/tex]