Explanation:
R = Radius of curvature = 20 cm
Focal length = f = R/2 = 20/2 = 10 cm
f = -10 cm (convex mirror)
u = Object distance = 50 cm
Lens Equation
[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{-10}-\frac{1}{50}\\\Rightarrow \frac{1}{v}=\frac{-3}{25} \\\Rightarrow v=\frac{-25}{3}=-8.33\ cm[/tex]
Image is 8.33 cm behind the mirror
As, the sign is negative the image is behind the mirror and is virtual in nature
[tex]m=-\frac{v}{u}\\\Rightarrow m=-\frac{-8.33}{50}\\\Rightarrow m=0.166[/tex]
Magnification is 0.166
Positive magnification indicates the image is upright.
R = Radius of curvature = 60 cm
Focal length = f = R/2 = 60/2 = 30 cm
f = -30 cm (convex mirror)
u = Object distance = 200 cm
Lens Equation
[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{-30}-\frac{1}{200}\\\Rightarrow \frac{1}{v}=\frac{-23}{600} \\\Rightarrow v=\frac{-600}{23}=-26.08\ cm[/tex]
Image is 26.08 cm behind the mirror
As, the sign is negative the image is behind the mirror and is virtual in nature
[tex]m=-\frac{v}{u}\\\Rightarrow m=-\frac{-26.08}{200}\\\Rightarrow m=0.13[/tex]
Magnification is 0.13
Positive magnification indicates the image is upright.