Answer:
a) [tex]\phi=2.22\times10^{-19}\, J[/tex]
b) [tex]\lambda_0=900 \, nm[/tex]
c) [tex]K_{max}=e\cdot V_0=1.922\times 10^{-19}\, J[/tex]
Explanation:
a)
We have that for the photoelectric effect the maximum kinetic energy for the electrons is given by:
[tex]K_{max}=\frac{hc}{\lambda}-\phi=e\cdot V_0[/tex]
From the previous we get:
[tex]\phi=\frac{hc}{\lambda}-e\cdotV_0\=2.22\times10^{-19} \, J[/tex]
Where we used the fact that [tex]h=6.63\times 10^{-34} \, J.s[/tex],[tex]e=1.602\times 10^{-19} \, C[/tex] and [tex]c=3\times 10^{8}\, m/s[/tex].
b)
The work function is defined as:
[tex]\phi=\frac{hc}{\lambda_{0}}\implies\lambda_0=\frac{hc}{\phi}=9.0\times10^{-7}=900 \, nm[/tex]
Where [tex]\lambda_0[/tex] is the cutoff wavelength.
c)
As said before:
[tex]K_{max}=e\cdotV_0=1.602\times 10^{-19}=1.922\times 10^{-19} J[/tex]