Answer:
[tex]y=-\dfrac{9}{40}x^2+\dfrac{441}{40}\\ \\y=-\dfrac{9}{160}x^2+\dfrac{1,521}{160}[/tex]
Step-by-step explanation:
If a parabola has its vertex on the y-axis, then its equation is
[tex]y=ax^2+b[/tex]
This parabola passes through the point R(3,9), then
[tex]9=a\cdot 3^2+b\\ \\9=9a+b[/tex]
The area of the right triangle PQR is
[tex]A_{PQR}=\dfrac{1}{2}\cdot PQ\cdot QR[/tex]
Find PQ and QR, if [tex]P(x_1,0),\ Q(3,0),\ R(3,9):[/tex]
[tex]PQ=\sqrt{(x_1-3)^2+(0-0)^2}=|x_1-3|\\\\QR=\sqrt{(3-3)^2+(0-9)^2}=9[/tex]
Now,
[tex]40.5=\dfrac{1}{2}\cdot |x_1-3|\cdot 9\\ \\90=9|x_1-3|\\ \\|x_1-3|=10\\ \\x_1-3=10\ \text{or}\ x_1-3=-10\\ \\x_1=13\ \text{or }x_1=-7[/tex]
We get two possible points [tex]P_1(-7,0)[/tex] and [tex]P_2(13,0).[/tex]
For point [tex]P_1:\\[/tex]
[tex]0=a\cdot (-7)^2+b\\ \\49a+b=0[/tex]
So,
[tex]b=-49a\\ \\9=9a-49a\\ \\-40a=9\\ \\a=-\dfrac{9}{40}\\ \\b=\dfrac{441}{40}\\ \\y=-\dfrac{9}{40}x^2+\dfrac{441}{40}[/tex]
For point [tex]P_2:\\[/tex]
[tex]0=a\cdot (13)^2+b\\ \\169a+b=0[/tex]
So,
[tex]b=-169a\\ \\9=9a-169a\\ \\-160a=9\\ \\a=-\dfrac{9}{160}\\ \\b=\dfrac{1,521}{160}\\ \\y=-\dfrac{9}{160}x^2+\dfrac{1,521}{160}[/tex]