A long cylindrical rod of diameter 240 mm with thermal conductivity of 0.6 W/m ⋅ K experiences uniform volumetric heat generation of 24,000 W/m3 . The rod is encapsulated by a circular sleeve having an outer diameter of 440 mm and a thermal conductivity of 6 W/m ⋅ K. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2 ⋅ K. (a) Find the temperature at the interface between the rod and sleeve and on the outer surface. (b) What is the temperature at the center of the rod?

Respuesta :

Answer:

temperature at the interface between the rod and sleeve: 75.87 °C

temperature on sleeve's  the outer surface: 58.42 °C

temperature at the center of the rod: 219.87 °C

Explanation:

Data

rod radius, [tex]r_R = 0.12 m[/tex]

rod thermal conductivity, [tex]k_R = 0.6 W/(m \, K)[/tex]

heat generation, [tex]q_{gen} = 24,000 W/m^3[/tex]

sleeve outer radius, [tex]r_S = 0.22 m [/tex]

sleeve thermal conductivity, [tex]k_S = 6 W/(m \, K)[/tex]

air temperature, [tex]T_a = 27 \, C[/tex]

convection coefficient, [tex]h = 25 W/(m^2 \, K)[/tex]

From figure attached, the unknowns are

temperature at the interface between the rod and sleeve, [tex]T_{o,R}[/tex]

temperature at the outer surface, [tex]T_{o,S}[/tex]

temperature at the center of the rod, [tex]T_C[/tex]

Assumptions: steady state, heat flux in radius direction only

(a)

Heat flux from the inner face of the sleeve to air

Thermal resistance (R_t) combines conduction through sleeve and convection to air (L is the length of the sleeve and the rod)

[tex]R_t = \frac{ln(r_S/r_R)}{2 \pi k_S L} + \frac{1}{h A}[/tex]

[tex]R_t = \frac{ln(r_S/r_R)}{2 \pi k_S L} + \frac{1}{h 2 \pi r_S L}[/tex]

[tex]R_t \times L = \frac{ln(0.22 m/0.12 m)}{2 \pi 6 W/(m \, K)} + \frac{1}{25 W/(m^2 \, K) 2 \pi 0.220 m}[/tex]

[tex]R_t \times L = 0.045 (m \, K)/W[/tex]

Rod's Volume is calculated as

[tex]V_r = \pi \times r_R^2 \times L[/tex]

[tex]V_r = \pi \times (0.12 m)^2 \times L[/tex]

[tex]V_r = 0.045 m^2 \times L[/tex]

Energy balance for the rod gives

[tex]q_{in} - q_{out} + q_{gen} = \frac{dq}{dt}[/tex]

where [tex]\frac{dq}{dt} = 0[/tex] from steady state assumption, also, [tex]q_{in} = 0[/tex] for this system. So

[tex]q_{out} = q_{gen} \times V_r[/tex]

[tex]q_{out} = 24,000 W/m^3 \times 0.045 m^2 \times L[/tex]

[tex]q_{out} = 1085.73 W/m^2 \times L[/tex]

Energy balance for the sleeve gives

[tex]q_{in} - q_{out} + q_{gen} = \frac{dq}{dt}[/tex]

where [tex]\frac{dq}{dt} = 0[/tex] from steady state assumption, also, [tex]q_{gen} = 0[/tex] for this system. So

[tex]q_{in} = q_{out} = 1085.73 W/m^2 \times L[/tex]

Heat flux is computed as

[tex]q = \frac{\Delta T}{R}[/tex]

For the case inner face of the sleeve to air, the equation is

[tex]q = \frac{T_{o,R} - T_a}{R_t}[/tex]

[tex]T_{o,R} = q \times R_t + T_a [/tex]  

[tex]T_{o,R} = 1085.73 W/m^2 \times L \times \frac{0.045 (m \, C)/W}{L} + 27 \, C[/tex]

[tex]T_{o,R} = 75.87 \, C[/tex]  

Heat flux from sleeve's outer face to air has a thermal resistance called R_{conv}

[tex]R_{conv} = \frac{1}{h 2 \pi r_S L}[/tex]

[tex]R_{conv} = \frac{1}{25 W/(m^2 \, K) 2 \pi 0.220 m \, L}[/tex]

[tex]R_{conv} = 0.029 (m \, K)/W \times 1/L[/tex]

For the case outer face of the sleeve to air, heat flux the equation is

[tex]q = \frac{T_{o,S} - T_a}{R_{conv}}[/tex]

[tex]T_{o,S} = q \times R_{conv} + T_a[/tex]  

[tex]T_{o,S} = 1085.73 W/m^2 \times L \times 0.029 (m \, C)/W \times 1/L + 27 \, C[/tex]

[tex]T_{o,S} = 58.42 \, C[/tex]

(b)

Rod's temperature as function of radius can be computed as

[tex]T(r) = \frac{q_{gen} \, r_R^2}{4 \, k_R} (1 - \frac{r^2}{r_R^2}) + T_{o,R}[/tex]

For r = 0 (the center)

[tex]T(r = 0) = \frac{q_{gen} \, r_R^2}{4 \, k_R} + T_{o,R}[/tex]

[tex]T(r = 0) = \frac{24,000 W/m^3 \, (0.12 m)^2}{4 \, 0.6 W/(m \, C)} + 75.87 \, C[/tex]

[tex]T(r = 0) = 219.87 C[/tex]