One cubic meter (1.00 m) of aluminum has a mass of 2.70 10 kg, and the same volume of iron has a mass of 7.8610'kg. Find the radus of a solid aluminum sphere that will balance a sod irn sphere o radu 14 squal-a balano rm

Respuesta :

Answer:

The radius of the solid aluminum sphere has to be [tex]r_{Al} =0.20m=20cm[/tex]

Explanation:

Hi

First of all, we're going to find the density of both materials, to do that we use ρ[tex]=\frac{mass}{Vol}=\frac{m}{V}[/tex]. Then [tex]\rho_{Al} =2.7010\frac{kg}{m^{3} }[/tex] and [tex]\rho_{Fe} =7.8610\frac{kg}{m^{3} }[/tex].

the second step is to find Volume of the iron sphere ([tex]V_{sphere}=\frac{4\pi r^{3}  }{3}[/tex]) so, [tex]V_{Fe}=\frac{4\pi (0.14)^{3}  }{3}=0.0115m^{3}[/tex].

The third step is to find the mass ([tex]m=V\rho[/tex]) on this iron sphere so, [tex]m_{Fe}=0.0115kg^{3}*7.861kg/m^{3} =0.0904kg[/tex]

The fourth step, we are going to use [tex]V_{Al}=\frac{m_{Fe}}{\rho_{Al} }[/tex] to find aluminum Volume hence its radius, [tex]\frac{4\pi r^{3} _{Al}}{3} =\frac{0.0904kg}{2.7010kg/m^{3}}[/tex], as we clear [tex]r_{Al}[/tex] we find that, [tex]r^{3} _{Al}=\frac{3}{4\pi } 0.0335m^{3} =0.008m^{3}[/tex], then[tex]r _{Al}=\sqrt[3]{0.008m^{3}} =0.2m[/tex].

ACCESS MORE