Respuesta :

Answer:

[tex]y(t) = \displaystyle\frac{-1}{t + c}[/tex]  

Step-by-step explanation:

[tex]\frac{dy}{dt} = y^2[/tex]

[tex]\frac{dy}{y^2} = dt[/tex]

If we integrate both the sides, we can get y(t)

Integrating, both sides, we get

[tex]\displaystyle\int \displaystyle\frac{dy}{y^2}= \int dt[/tex]

[tex]\displaystyle\frac{y^{-1}}{-1} = t + c[/tex]

where, c is the integration constant.

[tex]\displaystyle\frac{-1}{y} = t + c[/tex]

[tex]y = \displaystyle\frac{-1}{t + c}[/tex]

Thus, the obtained y(t) is

[tex]y(t) = \displaystyle\frac{-1}{t + c}[/tex]

ACCESS MORE