Let [tex]{s_n}_{n\in\Bbb N}[/tex] be a sequence that converges to [tex]L[/tex]. This means for any [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] such that [tex]|s_n-L|<\varepsilon[/tex] for all [tex]n>N[/tex]. From this inequality we see that [tex]|(s_n-L)-0|<\varepsilon[/tex], so it follows that [tex]s_n-L\to0[/tex].
On the other hand, let [tex]{s_n-L}[/tex] be a sequence that converges to 0. This means [tex]|(s_n-L)-0|<\varepsilon[/tex] for all large enough [tex]n[/tex], and we get the simpler inequality for free, [tex]|s_n-L|<\varepsilon[/tex], so it follows that [tex]s_n\to L[/tex].