Answer:
a) [tex]y=17.6m[/tex]
b) [tex]v_{x}=39.87m/s\\v_{y}=-28.05m/s[/tex]
Explanation:
From the exercise we got our initial data
[tex]v_{o}=44m/s\\\beta =25\\x=190m[/tex]
a) To find maximum height we know that at that point [tex]v_{y}=0[/tex]
[tex]v_{y} ^{2} =v_{oy} ^{2} +2a(y-y_{o} )[/tex]
[tex]0=(44sin25)^{2} -2(9.8)y[/tex]
Solving for y
[tex]y=\frac{(44sin25)^{2} }{2(9.8)} =17.6 m/s[/tex]
b) Since we know that the ball strikes the fairway 190 m away
[tex]x=v_{ox}t\\ 190=44cos25t[/tex]
Solving for t
[tex]t=4.76s[/tex]
Now, we can calculate the speed of the ball in both axes
[tex]v_{x}=44cos25=39.87m/s[/tex]
[tex]v_{y}=v_{oy}+at[/tex]
[tex]v_{y}=44sin25-(9.8)(4.76)=-28.05m/s[/tex]
The negative sign means the direction of the ball at that point.