Answer:
[tex]x_1=1[/tex]
Step-by-step explanation:
The matrix of the system of equations is [tex]A=\left[\begin{array}{cccc}8&6&-3&20\\4&2&-5&-7\\8&2&7&20\\4&2&-11&-4\end{array}\right][/tex].
Remember that using Cramer's Rule [tex]x_1=\frac{det(A_1)}{det(A)}[/tex], where [tex]A_1[/tex] is the same matrix A change the first column of A by b. Then [tex]A_1=\left[\begin{array}{cccc}31&6&-3&20\\2&2&-5&-7\\21&2&7&20\\11&2&-11&-4\end{array}\right][/tex].
Using Octave we calculate the determinants and obtain that det(A)=-3840 and [tex]det(A_1)=-3840[/tex].
Then [tex]x_1=\frac{-3840}{-3840}=1[/tex]