Answer:
Let [tex]S=\{M\in GL(n,r): det(M)=\pm1\}[/tex]
The subset S is a subgroup of GL(n,R) if satisfies:
1. The identity matrix [tex]I[/tex] belong to S.
2. If A and B are in S then AB is in S.
3. If A is belong to S then [tex]A^{-1}[/tex] belongs to S.
Let's see if S satisfies these conditions.
1. We know that [tex]det(I)=1[/tex], then [tex]I\in S[/tex].
2. Let A and B in S. [tex]det(AB)=det(A)det(B)=(\pm1)( \pm 1)=\pm 1[/tex]
Then AB is in S.
3. Let [tex]A\in S[/tex], [tex]det(A^{-1})=\frac{1}{det(A)}=\frac{1}{\pm 1}=\pm 1)[/tex], then [tex]A^{-1}\in S[/tex].
Since S satisfies all conditions then S is a subgroup of GL(n,R).