GL (n, R), the set of invertible nxn matrices with real entries, is a group under matrix multiplication. Determine if the nxn matrices with determinant -1 or 1 is a subgroup. If not, which property does not hold?

Respuesta :

Answer:

Let [tex]S=\{M\in GL(n,r): det(M)=\pm1\}[/tex]

The subset S is a subgroup of GL(n,R) if satisfies:

1. The identity matrix [tex]I[/tex] belong to S.

2. If A and B are in S then AB is in S.

3. If A is belong to S then [tex]A^{-1}[/tex] belongs to S.

Let's see if S satisfies these conditions.

1.  We know that [tex]det(I)=1[/tex], then [tex]I\in S[/tex].

2. Let A and B in S. [tex]det(AB)=det(A)det(B)=(\pm1)( \pm 1)=\pm 1[/tex]

Then AB is in S.

3. Let [tex]A\in S[/tex], [tex]det(A^{-1})=\frac{1}{det(A)}=\frac{1}{\pm 1}=\pm 1)[/tex], then [tex]A^{-1}\in S[/tex].

Since S satisfies all conditions then S is a subgroup of GL(n,R).

ACCESS MORE