Respuesta :
Answer:
The number of excess electrons on a red blood cell = [tex]\rm 1.56\times 10^7\ electrons.[/tex]
The ratio of the mass of the extra electrons to the mass of the cell without the excess charge = [tex]\rm 1.58\times 10^{-10}.[/tex]
The surface charge density on the red blood cell = [tex]\rm -1.38\times 10^{-2}\ C/m^2.[/tex] = [tex]\rm 8.68\times 10^{16}\ electrons/m^2.[/tex]
Explanation:
Given:
- Excess charge on the red blood cell, [tex]\rm q=-2.5\times 10^{-12}\ C.[/tex]
- Diameter of the red blood cell, [tex]\rm D = 7.6\ \mu C = 7.6\times 10^{-6}\ C.[/tex]
- Mass of the red blood cell, [tex]\rm m = 9.0\times 10^{-14}\ kg.[/tex]
Finding the number of excess electrons on a red blood cell:
Charge on an electron, [tex]\rm e = -1.6\times 10^{-19}\ C.[/tex]
If there are n number of excess electrons on the RBC, then,
[tex]\rm q=ne\\\therefore n = \dfrac qe=\dfrac{-2.5\times 10^{-12}}{-1.6\times 10^{-19}}=1.56\times 10^7\ electrons.[/tex]
Calculating the ratio of the mass of the extra electrons to the mass of the cell without the excess charge:
Mass of 1 electron, [tex]\rm m_e=9.11\times 10^{-31}\ kg.[/tex]
Mass of n electrons, [tex]\rm M= n\times 9.11\times 10^{-31}=1.56\times 10^7\times 9.11\times 10^{-31}=1.42\times 10^{-23}\ kg.[/tex]
The ratio of the mass of the extra electrons to the mass of the cell without the excess charge is given as
[tex]\rm Ratio = \dfrac{M}{m}=\dfrac{1.42\times 10^{-23}}{9.0\times 10^{-14}}=1.58\times 10^{-10}.[/tex]
Thus, the mass of the extra electrons does not appreciably affect the mass of the cell.
Calculating the surface charge density on the red blood cell:
It is given that the red blood cells can be modeled as spheres, then, the surface area of the RBC is given as
[tex]\rm A = 4\pi (Radius)^2=4\pi \times \left ( \dfrac D2\right ) ^2=4\pi \times \left ( \dfrac {7.6\times 10^{-6}}2\right ) ^2=1.81\times 10^{-10}\ m^2.[/tex]
The surface charge density of the RBC is given as:
[tex]\rm \sigma = \dfrac qA=\dfrac{-2.5\times 10^{-12}}{1.81\times 10^{-10}}=-1.38\times 10^{-2}\ C/m^2.[/tex]
In terms of [tex]\rm electrons/m^2[/tex],
[tex]\sigma = \rm \dfrac{n}{A}=\dfrac{1.56\times 10^7}{1.81\times 10^{-10}}=8.68\times 10^{16}\ electrons/m^2.[/tex]