Answer:
(The problem doesn't have solution as stated, i think you press 5 instead of $ on 535 and 50.16. With this as initial prices, they would never cost the same.)
Step-by-step explanation:
We can express the charge c of the Call First company as:
[tex]c_{cf}(m) = \$ 35 + 0.16 \frac{\$}{message} \ m[/tex]
where m is the number of messages sent.
For Cellular plus
[tex]c_{cp}(m) = \$ 45 + 0.08 \frac{\$}{message} \ m[/tex].
Now, for a number of messages m' the cost will be the same
[tex]c_{cf}(m') = c_{cp}(m) [/tex]
[tex] \$ 35 + 0.16 \frac{\$}{message} \ m' = \$ 45 + 0.08 \frac{\$}{message} \ m'[/tex]
Now, we can work the equation a little
[tex] 0.16 \frac{\$}{message} \ m' - 0.08 \frac{\$}{message} \ m'= \$ 45 - \$ 35 [/tex]
[tex] (0.16 \frac{\$}{message} \ - 0.08 \frac{\$}{message}) \ m'= \$ 10 [/tex]
[tex] 0.08 \frac{\$}{message} \ m'= \$ 10 [/tex]
[tex] m'= \frac{ \$ 10 }{ 0.08 \frac{\$}{message} } [/tex]
[tex] m'= 125 \ messages [/tex]
So the number of messages that needs to be sent have make both plans cost the same is 125.