Respuesta :

Answer:

The coefficient of a²b³c is -720

Step-by-step explanation:

Given: [tex](2a-b+3c)^6[/tex]

Let 2a-b = x and 3c = y

[tex](x+y)^6[/tex]

General term of binomial expansion.

  • [tex]T_{r+1}=^nC_rx^{n-r}y^r[/tex]

where, n=6 , r=1 ( because exponent of c is 1)

[tex]\Rightarrow ^6C_1x^{6-1}y^1[/tex]

[tex]\Rightarrow 6(2a-b)^{5}3c[/tex]         [tex]\because y=3c, x=2a-b[/tex]

[tex]\Rightarrow 18(2a-b)^{5}c[/tex]  ----------(1)

Now, we simplify (2a-b)⁵

[tex]T_{r+1}=^5C_r(2a)^{5-r}(-b)^r[/tex]

The exponent of b is 3 and a is 2 .

If we take r=3 will get exponent of b is 3 and a is 2

So, put r=3

[tex]T_{4}=^5C_3(2a)^{2}(-b)^3=-40a^2b^3[/tex]

Substitute into equation (1)

[tex]\Rightarrow 18\cdot -40a^2b^3c[/tex]

[tex]\Rightarrow -720a^2b^3c[/tex]

Hence, The coefficient of a²b³c is -720

ACCESS MORE