Respuesta :

frika

Answer:

Reflection across the x-axis followed by dilation by a scale factor of [tex]\frac{1}{4}[/tex] with the center of dilation at the origin

Step-by-step explanation:

Rectangle EFGD has vertices at points E(-6,8), F(0,8), G(0,1) and D(-6,1).

1 transformation - reflection across the x-axis with the rule

[tex](x,y)\rightarrow (x,-y)[/tex]

So, the image rectangle E''F''G''D'' has vertices with coordinates

  • [tex]E(-6,8)\rightarrow E''(-6,-8);[/tex]
  • [tex]F(0,8)\rightarrow F''(0,-8);[/tex]
  • [tex]G(0,1)\rightarrow G''(0,-1);[/tex]
  • [tex]D(-6,1)\rightarrow D''(-6,-1).[/tex]

2 transformation - dilation by a scale factor of [tex]\frac{1}{4}[/tex] with the center of dilation at the origin. This transformation has the rule

[tex](x,y)\rightarrow (\frac{1}{4}x,\frac{1}{4}y)[/tex]

Thus,

  • [tex]E''(-6,-8)\rightarrow E'(-\frac{3}{2},-2);[/tex]
  • [tex]F''(0,-8)\rightarrow F'(0,-2);[/tex]
  • [tex]G''(0,-1)\rightarrow G'(0,-\frac{1}{4});[/tex]
  • [tex]D''(-6,-1)\rightarrow D'(-\frac{3}{2},-\frac{1}{4}).[/tex]

These are exactly vertices of rectangle E'F'G'D'.

ACCESS MORE