Respuesta :
A="b is in the middle"
B="c is to the right of b"
C="The letter def occur together in that order"
a) b can be in 7 places, but only one is the middle. So, P(A)=1/7
b) X=i, "b is in the i-th position"
Y=j, "c is in the j-th position"
[tex]P(B)=\displaystyle\sum_{i=1}^{6}(P(X=i)\displaystyle\sum_{j=i+1}^{7}P(Y=j))=\displaystyle\sum_{i=1}^{6}\frac{1}{7}(\displaystyle\sum_{j=i+1}^{7}\frac{1}{6})=\frac{1}{42}\displaystyle\sum_{i=1}^{6}(\displaystyle\sum_{j=i+1}^{7}1)=\frac{6+5+4+3+2+1}{42}=\frac{1}{2}[/tex]
P(B)=1/2
c) X=i, "d is in the i-th position"
Y=j, "e is in the j-th position"
Z=k, "f is in the i-th position"
[tex]P(C)=\displaystyle\sum_{i=1}^{5}( P(X=i)P(Y=i+1)P(Z=i+2))=\displaystyle\sum_{i=1}^{5}(\frac{1}{7}\times\frac{1}{6}\times\frac{1}{5})=\frac{1}{210}\displaystyle\sum_{i=1}^{5}(1)=\frac{1}{42}[/tex]
P(C)=1/42
P(A∩C)=2*(1/7*1/6*1/5*1/4)=1/420
[tex]P(B\cap C)=\displaystyle\sum_{i=1}^{3} P(X=i)P(Y=i+1)P(Z=i+2)\displaystyle\sum_{j=i+3}^{6}P(V=j)P(W=j+1)=\displaystyle\sum_{i=1}^{3}\frac{1}{6}\frac{1}{7}\frac{1}{5}(\displaystyle\sum_{j=1+3}^{6}\frac{1}{4}\frac{1}{3})=1/420[/tex]
P(B∩A)=3*(1/7*1/6)=1/14
P(A|C)=P(A∩C)/P(C)=(1/420)/(1/42)=1/10
P(B|C)=P(B∩C)/P(C)=(1/420)/(1/42)=1/10
P(A|B)=P(B∩A)/P(B)=(1/14)/(1/2)=1/7
P(A∩B)=1/14
P(A)P(B)=(1/7)*(1/2)=1/14
A and B are independent
P(A∩C)=1/420
P(A)P(C)=(1/7)*(1/42)=1/294
A and C aren't independent
P(B∩C)=1/420
P(B)P(C)=(1/2)*(1/42)=1/84
B and C aren't independent