Answer:
Its vertex is [tex](0,-1)[/tex].
The x value of its largest x-intercept is [tex]\frac{1}{2}[/tex].
The y value of the y-intercept is [tex]y = -1[/tex].
Step-by-step explanation:
A quadratic function in the format:
[tex]f(x) = ax^{2} + bx + c[/tex]
Has the vertex [tex](x_{v}, y_{v})[/tex] given by:
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = f(x_{v})[/tex]
So
[tex]f(x) = 4x^{2} - 1[/tex], we have that:
[tex]a = 4, b = 0, c = -1[/tex]
So
[tex]x_{v} = -\frac{b}{2a} = -\frac{0}{8} = 0[/tex]
[tex]y_{v} = f(0) = 4*(0)^{2} - 1 = -1[/tex]
Its vertex is [tex](0,-1)[/tex]
The x-intercept values are the values of x when f(x) = 0;
So
[tex]f(x) = 0[/tex]
[tex]4x^{2} - 1 = 0[/tex]
[tex]4x^{2} = 1[/tex]
[tex]x^{2} = \frac{1}{4}[/tex]
[tex]x = \pm \sqrt{\frac{1}{4}}[/tex]
[tex]x = \pm \frac{1}{2}[/tex]
The x value of its largest x-intercept is [tex]x = \frac{1}{2}[/tex].
The y-intercept is the value of f(x) when x = 0, so, f(0)
[tex]f(x) = 4x^{2} - 1[/tex]
[tex]f(0) = 4*(0)^{2} - 1 = 0-1 = -1[/tex]
The y value of the y-intercept is [tex]y = -1[/tex].