Respuesta :
Answer:
See solution below
Step-by-step explanation:
(a) If n=0 or 1, the equation
(1) [tex] y' = a(t)y + f(t)y^n [/tex]
would be a simple linear differential equation. So, we can assume that n is different to 0 or 1.
Let's use the following substitution:
(2) [tex]z=y^{n-1}[/tex]
Taking the derivative implicitly and using the chain rule:
(3) [tex]z'=(1-n)y^{-n}y'[/tex]
Multiplying equation (1) on both sides by
[tex](1-n)y^{-n}[/tex]
we obtain the equation
[tex](1-n)y^{-n}y' = (1-n)y^{-n}a(t)y+(1-n)y^{-n}f(t)y^n[/tex]
reordering:
[tex](1-n)y^{-n}y' = (1-n)y^{-n}ya(t)+(1-n)y^{-n}y^nf(t)[/tex]
[tex](1-n)y^{-n}y' = (1-n)y^{1-n}a(t)+(1-n)y^{0}f(t)[/tex]
[tex](1-n)y^{-n}y' = (1-n)y^{1-n}a(t)+(1-n)f(t)[/tex]
Now, using (2) and (3) we get:
[tex]z'= (1-n)za(t)+(1-n)f(t)[/tex]
which is an ordinary linear differential equation with unknown function z(t).
(b)
The equation we want to solve is
(4) [tex]xy'+ y = x^4 y^3[/tex]
Here, our independent variable is x (instead of t)
Assuming x different to 0, we divide both sides by x to obtain:
[tex]y'+\frac{1}{x}y = x^3 y^3[/tex]
[tex]y' = -\frac{1}{x}y+x^3 y^3[/tex]
Which is an equation of the form (1) with
[tex]a(x)=-\frac{1}{x}[/tex]
[tex]f(x)=x^3[/tex]
[tex]n=3[/tex]
So, if we substitute
[tex]z=y^{-2}[/tex]
we transform equation (4) in the lineal equation
(5) [tex]z'=\frac{2}{x}z-2x^3[/tex]
and this is an ordinary lineal differential equation of first order whose
integrating factor is
[tex]e^{\int (-\frac{2}{x})dx}[/tex]
but
[tex]e^{\int (-\frac{2}{x})dx}=e^{-2\int \frac{dx}{x}}=e^{-2ln(x)}=e^{ln(x^{-2})}=x^{-2}=\frac{1}{x^2}[/tex]
Similarly,
[tex]e^{\int (\frac{2}{x})dx}=x^2[/tex]
and the general solution of (5) is then
[tex]z(x)=x^2\int (\frac{-2x^3}{x^2})dx+Cx^2=-2x^2\int xdx+Cx^2=\\\ -2x^2\frac{x^2}{2}+Cx^2=-x^4+Cx^2[/tex]
where C is any real constant
Reversing the substitution
[tex]z=y^{-2}[/tex]
we obtain the general solution of (4)
[tex]y=\sqrt{\frac{1}{z}}=\sqrt{\frac{1}{-x^4+Cx^2}}[/tex]
Attached there is a sketch of several particular solutions corresponding to C=1,4,6
It is worth noticing that the solutions are not defined on x=0 and for C<0
![Ver imagen rodolforodriguezr](https://us-static.z-dn.net/files/d15/e83109000277f54eea4bcc2ad4254f65.png)