Respuesta :

caylus
Hello,

log (16)=2 in base 3x-5
==>16=2^(3x-5)
==>2^4=2^(3x-5)
==>4=3x-5
==>3x=9
==>x=3



Answer:

x=3

Step-by-step explanation:

The given equation is [tex]\log_{3x-5}16=2[/tex]

The relation between logarithmic function and exponential function is given by

[tex]\text{If }y=b^x\text{ then }x=\log_b(y)[/tex]

On comparing, we get

b = 3x-5

y = 16

x = 2

Hence, using the relation, we have

[tex]16=(3x-5)^2[/tex]

Take square root both sides

[tex]\pm\sqrt{16}=3x-5[/tex]

On simplifying

[tex]3x-5=\pm4\\\\3x=\pm4+5\\\\x=\frac{1}{3}(5\pm4)\\\\x=\frac{1}{3}\times1,\frac{1}{3}\times9\\\\x=\frac{1}{3},3[/tex]

For x = 1/3

[tex]3x-5\\\\=3\cdot \frac{1}{3}-5\\\\=-4[/tex]

Base cannot be negative.

Hence, the value of x is 3