Respuesta :
Hello,
log (16)=2 in base 3x-5
==>16=2^(3x-5)
==>2^4=2^(3x-5)
==>4=3x-5
==>3x=9
==>x=3
log (16)=2 in base 3x-5
==>16=2^(3x-5)
==>2^4=2^(3x-5)
==>4=3x-5
==>3x=9
==>x=3
Answer:
x=3
Step-by-step explanation:
The given equation is [tex]\log_{3x-5}16=2[/tex]
The relation between logarithmic function and exponential function is given by
[tex]\text{If }y=b^x\text{ then }x=\log_b(y)[/tex]
On comparing, we get
b = 3x-5
y = 16
x = 2
Hence, using the relation, we have
[tex]16=(3x-5)^2[/tex]
Take square root both sides
[tex]\pm\sqrt{16}=3x-5[/tex]
On simplifying
[tex]3x-5=\pm4\\\\3x=\pm4+5\\\\x=\frac{1}{3}(5\pm4)\\\\x=\frac{1}{3}\times1,\frac{1}{3}\times9\\\\x=\frac{1}{3},3[/tex]
For x = 1/3
[tex]3x-5\\\\=3\cdot \frac{1}{3}-5\\\\=-4[/tex]
Base cannot be negative.
Hence, the value of x is 3