Answer:
[tex]\rm KE\pm \Delta KE = 17.6\pm 6.8\ J.[/tex]
Explanation:
Given:
where,
[tex]\rm \Delta m,\ \Delta v[/tex] are the uncertainties in mass and velocity respectively.
The kinetic energy is given by
[tex]\rm KE = \dfrac 12 mv^2 = \dfrac 12 \times 1.3\times 5.2^2=17.576\approx 17.6\ J.[/tex]
The uncertainty in kinetic energy is given as:
[tex]\rm \dfrac{\Delta KE}{KE}=\dfrac{\Delta m}{m}+\dfrac{2\Delta v}{v}\\\dfrac{\Delta KE}{17.6}=\dfrac{0.4}{1.3}+\dfrac{2\times 0.2}{5.2}\\\dfrac{\Delta KE}{17.6}=0.384\\\Rightarrow \Delta KE = 17.6\times 0.384 = 6.7854\ J\approx6.8\ J\\\\Thus,\\\\KE\pm \Delta KE = 17.6\pm 6.8\ J.[/tex]