Calculated the measurement uncertainty for Kinetic Energy when :mass = 1.3[kg] +/- 0.4[kg]velocity= 5.2 [m/s] +/- 0.2 [m/s]KE= 18 [J] +/- ___________________[kg(m/s2 )m]Measurement uncertainty [measurement x sum of relative uncertainties]

Respuesta :

Answer:

[tex]\rm KE\pm \Delta KE = 17.6\pm 6.8\ J.[/tex]

Explanation:

Given:

  • Mass, [tex]\rm m\pm\Delta m = 1.3\pm 0.4\ kg.[/tex]
  • Velocity, [tex]\rm v\pm \Delta v = 5.2\pm 0.2\ m/s.[/tex]

where,

[tex]\rm \Delta m,\ \Delta v[/tex] are the uncertainties in mass and velocity respectively.

The kinetic energy is given by

[tex]\rm KE = \dfrac 12 mv^2 = \dfrac 12 \times 1.3\times 5.2^2=17.576\approx 17.6\ J.[/tex]

The uncertainty in kinetic energy is given as:

[tex]\rm \dfrac{\Delta KE}{KE}=\dfrac{\Delta m}{m}+\dfrac{2\Delta v}{v}\\\dfrac{\Delta KE}{17.6}=\dfrac{0.4}{1.3}+\dfrac{2\times 0.2}{5.2}\\\dfrac{\Delta KE}{17.6}=0.384\\\Rightarrow \Delta KE = 17.6\times 0.384 = 6.7854\ J\approx6.8\ J\\\\Thus,\\\\KE\pm \Delta KE = 17.6\pm 6.8\ J.[/tex]

ACCESS MORE