Answer:
Given :Cost function : [tex]C(x)=7.6x + 10,800[/tex]
To Find : Find the average cost per item when the required number of items is produced
Solution:
a) 200 items
Cost function : [tex]C(x)=7.6x + 10,800[/tex]
Substitute x = 200
[tex]C(200)=7.6(200)+ 10,800[/tex]
[tex]C(200)=12320[/tex]
So, Total cost of producing 200 items is 12320
Now Average cost per item = [tex]\frac{\text{Total cost}}{\text{No. of items}}[/tex]
Average cost per item= [tex]\frac{12320}{200}[/tex]
Average cost per item=61.6
So, the average cost per item when 200 items are produced is 61.6 .
b) 2000 items
Cost function : [tex]C(x)=7.6x + 10,800[/tex]
Substitute x = 2000
[tex]C(2000)=7.6(2000)+ 10,800[/tex]
[tex]C(2000)=26000[/tex]
So, Total cost of producing 2000 items is 26000
Now Average cost per item = [tex]\frac{\text{Total cost}}{\text{No. of items}}[/tex]
Average cost per item= [tex]\frac{26000}{2000}[/tex]
Average cost per item=13
So, the average cost per item when 2000 items are produced is 13.
c) 5000 items
Cost function : [tex]C(x)=7.6x + 10,800[/tex]
Substitute x = 5000
[tex]C(5000)=7.6(5000)+ 10,800[/tex]
[tex]C(5000)=48800[/tex]
So, Total cost of producing 5000 items is 48800
Now Average cost per item = [tex]\frac{\text{Total cost}}{\text{No. of items}}[/tex]
Average cost per item= [tex]\frac{48800}{5000}[/tex]
Average cost per item=9.76
So, the average cost per item when 5000 items are produced is 9.76