Respuesta :

Answer:

y=sin(ln(x))

Step-by-step explanation:

First, we have to order the terms as follows and express y' as dy / dx:

[tex]x*\frac{dy}{dx} =\sqrt{(1-y^{2} )} \\\frac{x}{dx}=\frac{dy}\sqrt{(1-y^{2} )}}\\\frac{dx}{x}=\frac{dy}{\sqrt{(1-y^{2} )} }[/tex]

Then, we have to integrate

[tex]\int{\frac{dx}{x}=\int{\frac{dy}{\sqrt{(1-y^{2} )} }[/tex]

with this solution after integration:

[tex]ln(x)+C1=arcsin(y)+C2[/tex]

Then, we have to reorder

[tex]arcsin(y)=ln(x)+C[/tex]

and applied Sin function on both sides

[tex]sin(arcsin(y))=sin(ln(x)+C)\\y=sin(ln(x)+C)[/tex]

To define the value of C, we use the known point y(1)=0 and replace in the equation

[tex]y=sin(ln(x)+C)\\0=sin(ln(1)+C)\\0=sin(0+C)\\0=sin(C)\\C=arcsin(0)\\C=0[/tex]

The function that proves that differential equation is

[tex]y=sin(ln(x))[/tex]

ACCESS MORE