Respuesta :

Answer:

[tex]\dfrac{y^3}{3}\ =\ \dfrac{x^2}{2}+\dfrac{1}{3}[/tex]

Step-by-step explanation:

According to the given question,

The given differential equation is

    [tex]xdx\ -\ y^2dy\ =\ 0,\ y(0)\ =\ 1[/tex]

[tex]=>\ xdx\ =\ y^2dy[/tex]

On integrating both sides, we will have

[tex]=>\ \int{xdx}\ =\ \int{y^2dy}[/tex]

[tex]=>\ \dfrac{x^2}{2}\ =\ \dfrac{y^3}{3}+C[/tex]          (1)

Now, according to question

y(0)=1

so, we can write

[tex]=>\ \dfrac{x^2}{2}\ =\ \dfrac{y^3}{3}+C[/tex]

[tex]=>\ \dfrac{0^2}{2}\ =\ \dfrac{1^3}{3}+C[/tex]

[tex]=>\ C\ =\ -\dfrac{1}{3}[/tex]

Now, by putting the value of C in equation (1), we will get

   [tex]\dfrac{x^2}{2}\ =\ \dfrac{y^3}{3}-\ \dfrac{1}{3}[/tex]

[tex]=>\dfrac{y^3}{3}\ =\ \dfrac{x^2}{2}+\dfrac{1}{3}[/tex]

So, the solution of given differential equation will be

[tex]\dfrac{y^3}{3}\ =\ \dfrac{x^2}{2}+\dfrac{1}{3}[/tex]

ACCESS MORE