Respuesta :
Answer:
1) 7 × 10⁹ MJ of energy
2) 48.611 days
Step-by-step explanation:
Given:
Electricity produced by the dam = 2 × 10⁹ W
Concrete in dam = 7 × 10⁹ Kg
also,
1 MJ energy is required to produce 1 kg
or
1 × 10⁶ J is required to produce 1 kg
1) Now, the energy required for 7 × 10⁹ Kg = 7 × 10⁹ × 1 × 10⁶
or
= 7 × 10⁹ MJ of energy
2) Energy produced = 2 × 10⁹ W = 2 × 10⁹ J/s
Now,
energy payback time = [tex]\frac{\textup{Energy required}}{\textup{Energy produced}}[/tex]
or
energy payback time = [tex]\frac{7\times10^9\ MJ}{2\times10^9\ J/s}[/tex]
or
energy payback time = 3.5 × 10⁶ seconds
now,
1 day = 24 × 60 × 60 seconds = 72000 seconds
thus,
3.5 × 10⁶ seconds = [tex]\frac{3.5\times10^6}{72000}[/tex] = 48.611 days
Answer:
(I). The energy is [tex]7\times10^{9}\ MJ[/tex].
(II). The time is [tex]3.5\times10^{6}\ sec[/tex].
Step-by-step explanation:
Given that,
Power [tex]P= 2\times10^{9}\ Watts = 2\times10^{9}\ joule/sec [/tex]
Mass of concrete [tex]m= 7\times10^{9}\ kg[/tex]
Concrete requires 1 MJ of energy to produce 1 kg.
(I). We need to calculate the energy
Using formula of energy
[tex]1\ MJ =10^{6}\ J[/tex]
1 kg concrete required 10⁶ J energy.
So, The energy is
[tex]7\times10^{9}\ kg\ concrete = 7\times10^{9}\times10^{6}\ J[/tex]
The energy is [tex]7\times10^{9}\ MJ[/tex].
(II). We need to calculate the time
Using formula of power
[tex]P=\dfrac{E}{t}[/tex]
[tex]t=\dfrac{E}{P}[/tex]
Put the value into the formula
[tex]t=\dfrac{7\times10^{9}\times10^{6}}{2\times10^{9}\times60\times60}[/tex]
[tex]t=3500000\ sec[/tex]
[tex]t=3.5\times10^{6}\ sec[/tex]
Hence, (I). The energy is [tex]7\times10^{9}\ MJ[/tex].
(II). The time is [tex]3.5\times10^{6}\ sec[/tex].