Respuesta :
Answer:
[tex]y(x)\ =\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.{(4x)}^{m+1}}{2m!}\ +\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.(4x){m+1}}{(2m+1)!}.[/tex]
Step-by-step explanation:
Given differential equation is
- y'' + 4y = 0 (1)
We have to find the power series solution of given differential equation about the ordinary point x = 0.
Power series solution of any given differential equation can be given by
[tex]y(x)\ =\ C_0+C_1.x+C_2.\dfrac{x^2}{2!}+C_3.\dfrac{x^3}{3!}+....[/tex]
[tex]=\ \sum_{n=0}^{\infty}C_n.\dfrac{x^n}{n!}[/tex]
[tex]=>y'(x)\ =\ \sum_{n=1}^{\infty}\dfrac{n.C_n.x^{n-1}}{n!}[/tex]
[tex]=>y''(x)\ =\ \sum_{n=2}^{\infty}\dfracf{n.(n-1)C_n.x^{n-2}}{n!}[/tex]
Now, by putting these values in equation (1), we have
[tex]\sum_{n=2}^{\infty}\dfracf{n.(n-1)C_n.x^{n-2}}{n!}\ +\ 4x\sum_{n=0}^{\infty}C_n.\dfrac{x^n}{n!}\ =\ 0[/tex]
[tex]=>\ \sum_{n=0}^{\infty}\dfracf{(n+1).(n+1)C_{n+2}.x^{n}}{n!}\ +\ 4x\sum_{n=0}^{\infty}C_n.\dfrac{x^n}{n!}\ =\ 0[/tex]
[tex]=>\ \sum_{n=0}^{\infty}[(n+1).(n+2)C_{n+2}+4xC_n]x^n\ =\ 0[/tex]
[tex]=>\ (n+1).(n+2).C_{n+2}+4x.C_n\ =\ 0[/tex]
[tex]=>\ C_{n+2}\ =\ \dfrac{-4x}{(n+1)(n+2)}.C_n[/tex]
for n = 0
[tex]C_2\ =\ \dfrac{-4x}{2}.C_0[/tex]
for n = 1
[tex]C_3\ =\ \dfrac{-4x}{6}.C_1[/tex]
for n = 2
[tex]C_4\ =\ \dfrac{-4x}{12}.C_2[/tex]
[tex]=\ \dfrac{16x^2}{24}.C_0[/tex]
for n = 3
[tex]C_5\ =\ \dfrac{-4x}{20}.C_3[/tex]
[tex]=\ \dfrac{16x^2}{120}[/tex]
for n=4
[tex]C_6\ =\ \dfrac{-4x}{30}C_4[/tex]
[tex]=\ \dfrac{-64.x^3}{720}.C_0[/tex]
As we can see for
for even value of n i.e n = 2m where m is any integer.
[tex]C_2m\ =\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.{(4x)}^{m+1}}{2m!}[/tex]
for odd value of n i.e n =2m+1 , where m is any integer.
[tex]C_{2m+1}\ =\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.(4x)^{m+1}}{(2m+1)!}[/tex]
So, the power series solution about the ordinary point x=0, can be given by
[tex]y(x)\ =\ \sum_{n=0}^{\infty}\dfrac{C_n.x^n}{n!}[/tex]
[tex]=\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.{(4x)}^{m+1}}{2m!}\ +\ \sum_{m=0}^{\infty}\dfrac{-(-1)^m.(4x)^{m+1}}{(2m+1)!}.[/tex]