Answer:
The system has unique solution.
Using backward substitution we have
1. [tex]x_4=4[/tex]
2.
[tex]x_3+2x_4=2\\x_3+2(4)=2\\x_3+8=2\\x_3=-6[/tex]
3.
[tex]x_2+2x_3+x_4=5\\x_2+2(-6)+4=5\\x_2-12+4=5\\x_2=5+8\\x_2=13[/tex]
4.
[tex]x_1+2x_2+x_4=4\\x_1+2(13)+4=4\\x_1+26+4=4\\x_1=-26[/tex]
The the solution is [tex](x_1,x_2,x_3,x_4)=(-26,13,-6,4)[/tex]