Answer:
a) 99.9999%
b) 98.5938%
c) 9.26
d) 2.23
Step-by-step explanation:
A="at least one instance is Klez"
B="Five or more instances are Klez"
Xi={1 if The i-th instance is Klez, 0 else}
Y=Bin(20, 0.463)
a) [tex]P(A)=P(Y\geq 1 )=1-P(Y=0)=1-P(\displaystyle\bigcap_{i=1}^{20}{X_i=1})=1- P(\displaystyle\sum_{i=1}^{20}X_i=20)=1- \displaystyle\prod_{i=1}^{20} P(X_i=1)=1-P(X_i=1)^{20}=1-0.4630^{20}=0.9999[/tex]
b) [tex]P(B)=P(Y\geq 5)=1-P(Y<5)=1-\displaystyle\sum_{n=0}^{4}P(Y=n)=1- P(\displaystyle\sum_{i=1}^{20}X_i<5)[/tex]
[tex]P(B)=1-\displaystyle\sum_{n=0}^{4}(^{20}_n)(0.4630)^n(1-0.4630)^{20-n} = 1-(3.9763\times10^{-6}+6.8568\times10^{-5}+5.6163\times10^{-4}+2.9054\times10^{-3}+0.0106)=0.9859[/tex]
c) [tex]E[Y]=20\times0.463=9.26[/tex]
d) [tex]Var(Y)=20\times0.463\times(1-0.463)=4.97, \sigma=\sqrt{4.97}=2.23[/tex]